Eta Kappa Nu
 Electrical Engineering Honor Society

Initiation Test
Submission options:
(a) Scan answer sheet and email: David.Graham@mail.wvu.edu
(b) Bring to Dr. Graham's office: AER 355 (leave under door if nobody there)

Turn in just the answer sheet (last page of the test)

1. West Virginia University's chapter of Eta Kappa Nu is the \qquad chapter.
2. Eta Kappa Nu was founded by \qquad in the year of \qquad .
3. Eta Kappa Nu's symbol is the:
a. The Wheatstone Bridge
b. The Capacitance Bridge
c. The Bent
d. The P-N Junction.
4. Dr. \qquad is the Eta Kappa Nu faculty advisor.
5. Eta Kappa Nu is $\mathrm{a}(\mathrm{n})$ \qquad Honor Society for Electrical and Computer Engineers.
a. West Virginia University
b. National
c. International
d. Universal
6. Match the 2023-2024 officers with their respective position:
\qquad President
a. Ian Jackson

Vice President
b. Samuel Moody

Treasurer
c. Jackson Price

Secretary
d. Rhia Bipin Roy
7. Write the decimal number 8513 in
a. Base 2
b. Base 8
c. Base 16
8. What is the average power dissipated by an electric heater with a resistance of 75Ω drawing a current of $20 \sin \left(30 \mathrm{t}+45^{\circ}\right) \mathrm{A}$?
a. 0 kW
b. 15 kW
c. 21.21 kW
d. 30 kW
9. Write one line of code to implement each of the following in MATLAB (no loops or semicolons allowed):
a. Sum all odd integers from 1 to 100 without using the sum function.
b. Create the following matrix

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

c. Sum of all numbers from 1 to 100 that aren't divisible by 5
10. Express the following function as a sum of products:

$$
F=(\bar{A}+B)(\bar{B}+\bar{C})(A+C)
$$

Choose among the following multiple-choice options
a. $\quad F=A B C+A \bar{B} C$
b. $\quad F=A B C+\bar{A} \bar{B} C$
c. $F=A B \bar{C}+A \bar{B} C$
d. $F=A B \bar{C}+\bar{A} \bar{B} C$
11. A second order, continuous-time system is defined by the following transfer function:

$$
H(s)=\frac{20}{s^{2}+2 s+4}
$$

If the system receives a step input, what is the steady state output, $y_{s s}(t)$?
a. 0
b. 1
c. 5
d. ∞
12. For the circuit below, $V_{D D}=10 \mathrm{~V}$ and $V_{O U T}=2 \mathrm{~V}$. Assume the transistor is in saturation, $V_{T N}=1.2 \mathrm{~V}$, $V_{D S Q}=5 V$, and $V_{G S} \approx I_{D} \cdot R_{S}$. The current across the bias resistors $\left(I_{1}\right)$ is equal to $0.05 I_{D}$, and $R 1\left|\mid R 2=96 \Omega\right.$. Find R_{1}, R_{2}, R_{D}, and R_{S}.

13. For $\mathrm{h}(\mathrm{t})$ and $\mathrm{f}(\mathrm{t})$ sketched below, the convolution $y(t)=h(t) * f(t)$ has $y(1)=$?

a. 1
b. 4
c. 2
d. 0.5
e. 0.25
f. 0
g. None of the above
14. For the circuit below, find $V_{i n}$

15. The elements in Figure 1 and Figure 2 are linear and the sources are DC. As seen by the terminals a and b, the circuit in Figure 1 can be equivalently represented by the circuit in Figure 2 with $V_{s}[V]$ and $R[\Omega]$ values as follows:

a. $\quad V_{s}=-22 V, R=4 \Omega$
b. $\quad V_{s}=-22 V, R=7 \Omega$
c. $V_{s}=-21 V, R=7 \Omega$
d. $\quad V_{s}=-21 V, R=4 \Omega$
16. When a CPU fetches an instruction word from memory, the word contains an operation code that indicates the type of operation the CPU is to perform. A computer may use various addressing modes to specify the operand location. One such addressing mode is illustrated below, where R designates some register within the CPU and d is a constant embedded in the instruction word.

INSTRUCTION WORD

Which of the following terms best describes the addressing mode used by the instruction above?
a. Immediate addressing
b. Direct addressing
c. Indexed addressing
d. Indirect addressing
17. Magnetic flux density, B, and magnetic field strength, H, may experience changes at the interface of materials whose magnetic properties differ from one another. Consider the following:
i. magnitude of \mathbf{B}
ii. normal component of \mathbf{B}
iii. tangential component of B
iv. magnitude of \mathbf{H}
v. normal component of \mathbf{H}
vi. tangential component of \mathbf{H}

What combination represents the properties of an electromagnetic wave that are continuous (i.e, do not change) across such an interface?
a. i and ii
b. ii and vi
c. iii and v
d. iv and vi
18. The frequency response of a system directly tells us what?
a. How the system phase shifts the input of the system
b. What the spectral and power efficiency of the system is
c. The sampling rate of the input
d. All the above
19. What is a half-duplex system?
a. Data can only be transmitted and received in one direction
b. Data can be transmitted and received in both directions simultaneously
c. Data can only flow in one direction and cannot flow back the other way
d. Data is transmitted and received over a wireless connection
20. For the circuit below, assume $Z_{1}=20 k \Omega$ and $Z_{2}=-j 80 k \Omega . V_{\text {out }}$ is nearly:

a. $\quad V_{\text {out }}=\left(4 \angle-90^{\circ}\right) V_{\text {in }}$
b. $\quad V_{\text {out }}=\left(4 \angle 90^{\circ}\right) V_{\text {in }}$
c. $\quad V_{\text {out }}=(1-j 4) V_{\text {in }}$
d. $\quad V_{\text {out }}=(1+j 4) V_{\text {in }}$

Answer Sheet:

1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6.

(List a-d in proper order)
7.
a.
b. \qquad
c. \qquad
8. \qquad
9.
a. \qquad
b. \qquad
c. \qquad
10. \qquad
11. \qquad

